Physical Address
304 North Cardinal St.
Dorchester Center, MA 02124
Physical Address
304 North Cardinal St.
Dorchester Center, MA 02124
Hoste EAJ, Kellum JA, Selby NM, Zarbock A, Palevsky PM, Bagshaw SM, Goldstein SL, Cerda J, Chawla LS. World epidemiology and outcomes of acute kidney damage. Nat Rev Nephrol. 2018;14:607–25.
Susantitaphong P, Cruz DN, Cerda J, Abulfaraj M, Alqahtani F, Koulouridis I, Jaber BL. Acute Kidney Harm Advisory Group of the American Society of N: World incidence of AKI: a meta-analysis. Clin J Am Soc Nephrol. 2013;8:1482–93.
Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P, Workgroup A. Acute renal failure – definition, end result measures, animal fashions, fluid remedy and data know-how wants: the Second Worldwide Consensus Convention of the Acute Dialysis High quality Initiative (ADQI) Group. Crit Care. 2004;8:R204–12.
Ostermann M, Bellomo R, Burdmann EA, Doi Okay, Endre ZH, Goldstein SL, Kane-Gill SL, Liu KD, Prowle JR, Shaw AD, et al. Controversies in acute kidney damage: conclusions from a Kidney Illness: enhancing World Outcomes (KDIGO) Convention. Kidney Int. 2020;98:294–309.
Mehta RL, Kellum JA, Shah SV, Molitoris BA, Ronco C, Warnock DG, Levin A. Acute kidney damage community: report of an initiative to enhance outcomes in acute kidney damage. Crit Care. 2007;11:439-442.
Haase M, Devarajan P, Haase-Fielitz A, Bellomo R, Cruz DN, Wagener G, Krawczeski CD, Koyner JL, Murray P, Zappitelli M, et al. The end result of neutrophil gelatinase-associated lipocalin-positive subclinical acute kidney damage: a multicenter pooled evaluation of potential research. J Am Coll Cardiol. 2011;57:1752–61.
Kashani Okay, Cheungpasitporn W, Ronco C. Biomarkers of acute kidney damage: the pathway from discovery to medical adoption. Clin Chem Lab Med. 2017;55:1074–89.
Nickolas TL, O’Rourke MJ, Yang J, Sise ME, Canetta PA, Barasch N, Buchen C, Khan F, Mori Okay, Gigllo J, et al. Sensitivity and specificity of a single emergency division measurement of urinary neutrophil gelatinase-associated lipocalin for diagnosing acute kidney damage. Ann Intern Med. 2008;148:810-U821.
Moriyama T, Hagihara S, Shiramomo T, Nagaoka M, Iwakawa S, Kanmura Y. Comparability of three early biomarkers for acute kidney damage after cardiac surgical procedure beneath cardiopulmonary bypass. J Intensive Care. 2016;4:41–41.
Liu J, Zhao Y, Li ZQ, Chen Q, Luo CQ, Su JX, Wang YM. Biomarkers for detecting and enhancing AKI after liver transplantation: from analysis to therapy. Transplant Rev. 2021;35:100612.
MacLeod A. NCEPOD report on acute kidney injury-must do higher. Lancet. 2009;374:1405–6.
Williams RM, Jaimes EA, Heller DA. Nanomedicines for kidney illnesses. Kidney Int. 2016;90:740–5.
Younis MA, Tawfeek HM, Abdellatif AAH, Abdel-Aleem JA, Harashima H. Medical translation of nanomedicines: challenges, alternatives, and keys. Adv Drug Deliv Rev. 2022;181:114083.
Zheng C, Li M, Ding J. Challenges and alternatives of nanomedicines in medical translation. BIO Integr. 2021;2:57–60.
Wang LF, Zhang YJ, Li YY, Chen JH, Lin WQ. Latest advances in engineered nanomaterials for acute kidney damage theranostics. Nano Res. 2021;14:920–33.
Bellomo R, Might C, Wan L. Acute renal failure and sepsis. N Engl J Med. 2004;351:2347–9 (Writer reply 2347-2349).
Filomeni G, De Zio D, Cecconi F. Oxidative stress and autophagy: the conflict between injury and metabolic wants. Cell Loss of life Differ. 2015;22:377–88.
Cruz CM, Rinna A, Forman HJ, Ventura AL, Persechini PM, Ojcius DM. ATP prompts a reactive oxygen species-dependent oxidative stress response and secretion of proinflammatory cytokines in macrophages. J Biol Chem. 2007;282:2871–9.
Chandel NS, Maltepe E, Goldwasser E, Mathieu CE, Simon MC, Schumacker PT. Mitochondrial reactive oxygen species set off hypoxia-induced transcription. Proc Natl Acad Sci USA. 1998;95:11715–20.
Scherz-Shouval R, Shvets E, Fass E, Shorer H, Gil L, Elazar Z. Reactive oxygen species are important for autophagy and particularly regulate the exercise of Atg4. EMBO J. 2019;38:e101812.
Droge W. Free radicals within the physiological management of cell operate. Physiol Rev. 2002;82:47–95.
Genestra M. Oxyl radicals, redox-sensitive signalling cascades and antioxidants. Cell Sign. 2007;19:1807–19.
Pacher P, Beckman JS, Liaudet L. Nitric oxide and peroxynitrite in well being and illness. Physiol Rev. 2007;87:315–424.
Hrelia S, Angeloni C. New mechanisms of motion of pure antioxidants in well being and illness II. Antioxidants. 2021;10:1200.
Halliwell B. Biochemistry of oxidative stress. Biochem Soc Trans. 2007;35:1147–50.
Willcox JK, Ash SL, Catignani GL. Antioxidants and prevention of persistent illness. Crit Rev Meals Sci Nutr. 2004;44:275–95.
Frei B. Reactive oxygen species and antioxidant nutritional vitamins: mechanisms of motion. Am J Med. 1994;97:5S-13S.
Nishida N, Arizumi T, Takita M, Kitai S, Yada N, Hagiwara S, Inoue T, Minami Y, Ueshima Okay, Sakurai T, Kudo M. Reactive oxygen species induce epigenetic instability via the formation of 8-hydroxydeoxyguanosine in human hepatocarcinogenesis. Dig Dis. 2013;31:459–66.
Yasui M, Kanemaru Y, Kamoshita N, Suzuki T, Arakawa T, Honma M. Tracing the fates of site-specifically launched DNA adducts within the human genome. DNA Restore. 2014;15:11–20.
Valavanidis A, Vlachogianni T, Fiotakis Okay, Loridas S. Pulmonary oxidative stress, irritation and most cancers: respirable particulate matter, fibrous dusts and ozone as main causes of lung carcinogenesis via reactive oxygen species mechanisms. Int J Environ Res Public Well being. 2013;10:3886–907.
Juncos R, Garvin JL. Superoxide enhances Na-Okay-2Cl cotransporter exercise within the thick ascending limb. Am J Physiol-Renal Physiol. 2005;288:F982–7.
Cao CH, Edwards A, Sendeski M, Lee-Kwon W, Cui L, Cai CY, Patzak A, Pallone TL. Intrinsic nitric oxide and superoxide manufacturing regulates descending vasa recta contraction. Am J Physiol-Renal Physiol. 2010;299:F1056–64.
Hauser CJ. Activated polymorphonuclear leukocytes improve manufacturing of leukocyte microparticles with elevated adhesion molecules in sufferers with sepsis-Editorial remark. J Trauma-Harm Infect Crit Care. 2002;52:448–448.
Chelazzi C, Villa G, Mancinelli P, De Gaudio AR, Adembri C. Glycocalyx and sepsis-induced alterations in vascular permeability. Crit Care. 2015;19:26.
Bonventre JV, Yang L. Mobile pathophysiology of ischemic acute kidney damage. J Clin Make investments. 2011;121:4210–21.
Sutton TA, Kelly KJ, Mang HE, Plotkin Z, Sandoval RM, Dagher PC. Minocycline reduces renal microvascular leakage in a rat mannequin of ischemic renal damage. Am J Physiol Renal Physiol. 2005;288:F91-97.
Kunugi S, Shimizu A, Kuwahara N, Du X, Takahashi M, Terasaki Y, Fujita E, Mii A, Nagasaka S, Akimoto T, et al. Inhibition of matrix metalloproteinases reduces ischemia-reperfusion acute kidney damage. Lab Make investments. 2011;91:170–80.
Molitoris BA, Sutton TA. Endothelial damage and dysfunction: position within the extension section of acute renal failure. Kidney Int. 2004;66:496–9.
Kelly KJ, Williams WW Jr, Colvin RB, Meehan SM, Springer TA, Gutierrez-Ramos JC, Bonventre JV. Intercellular adhesion molecule-1-deficient mice are protected in opposition to ischemic renal damage. J Clin Make investments. 1996;97:1056–63.
Kelly KJ, Williams WW Jr, Colvin RB, Bonventre JV. Antibody to intercellular adhesion molecule 1 protects the kidney in opposition to ischemic damage. Proc Natl Acad Sci USA. 1994;91:812–6.
Singbartl Okay, Inexperienced SA, Ley Okay. Blocking P-selectin protects from ischemia/reperfusion-induced acute renal failure. FASEB J. 2000;14:48–54.
Kelly KJ, Molitoris BA. Acute renal failure within the new millennium: time to think about mixture remedy. Semin Nephrol. 2000;20:4–19.
Schofield ZV, Woodruff TM, Halai R, Wu MC, Cooper MA. Neutrophils–a key element of ischemia-reperfusion damage. Shock. 2013;40:463–70.
Kinsey GR, Li L, Okusa MD. Irritation in acute kidney damage. Nephron Exp Nephrol. 2008;109:e102-107.
Frangogiannis NG. Chemokines in ischemia and reperfusion. Thromb Haemost. 2007;97:738–47.
Korkmaz A, Kolankaya D. The protecting results of ascorbic acid in opposition to renal ischemia-reperfusion damage in male rats. Ren Fail. 2009;31:36–43.
Dosluoglu HH, Aktan AO, Yegen C, Okboy N, Yalcm AS, Yahn R, Ercan S. The cytoprotective results of verapamil and iloprost (ZK 36374) on ischemia/reperfusion damage of kidneys. Transpl Int. 1993;6:138–42.
Heinzelmann M, Mercer-Jones MA, Passmore JC. Neutrophils and renal failure. Am J Kidney Dis. 1999;34:384–99.
Li L, Huang L, Sung SS, Vergis AL, Rosin DL, Rose CE Jr, Lobo PI, Okusa MD. The chemokine receptors CCR2 and CX3CR1 mediate monocyte/macrophage trafficking in kidney ischemia-reperfusion damage. Kidney Int. 2008;74:1526–37.
Li L, Okusa MD. Macrophages, dendritic cells, and kidney ischemia-reperfusion damage. Semin Nephrol. 2010;30:268–77.
Parikh SM, Yang Y, He L, Tang C, Zhan M, Dong Z. Mitochondrial operate and disturbances within the septic kidney. Semin Nephrol. 2015;35:108–19.
Ince C, Mik EG. Microcirculatory and mitochondrial hypoxia in sepsis, shock, and resuscitation. J Appl Physiol. 1985;2016(120):226–35.
Guzy RD, Schumacker PT. Oxygen sensing by mitochondria at advanced III: the paradox of elevated reactive oxygen species throughout hypoxia. Exp Physiol. 2006;91:807–19.
Bar-Or D, Carrick MM, Mains CW, Rael LT, Slone D, Brody EN. Sepsis, oxidative stress, and hypoxia: are there clues to higher therapy? Redox Rep. 2015;20:193–7.
Nagar H, Piao S, Kim CS. Function of mitochondrial oxidative stress in sepsis. Acute Crit Care. 2018;33:65–72.
Sureshbabu A, Patino E, Ma KC, Laursen Okay, Finkelsztein EJ, Akchurin O, Muthukumar T, Ryter SW, Gudas L, Choi AMK, Choi ME. RIPK3 promotes sepsis-induced acute kidney damage through mitochondrial dysfunction. JCI Perception. 2018;3:e98411.
Kitur Okay, Wachtel S, Brown A, Wickersham M, Paulino F, Penaloza HF, Soong G, Bueno S, Parker D, Prince A. Necroptosis promotes Staphylococcus aureus clearance by inhibiting extreme inflammatory signaling. Cell Rep. 2016;16:2219–30.
Duprez L, Takahashi N, Van Hauwermeiren F, Vandendriessche B, Goossens V, Vanden Berghe T, Declercq W, Libert C, Cauwels A, Vandenabeele P. RIP kinase-dependent necrosis drives deadly systemic inflammatory response syndrome. Immunity. 2011;35:908–18.
Brealey D, Model M, Hargreaves I, Heales S, Land J, Smolenski R, Davies NA, Cooper CE, Singer M. Affiliation between mitochondrial dysfunction and severity and end result of septic shock. The Lancet. 2002;360:219–23.
Takasu O, Gaut JP, Watanabe E, To Okay, Fagley RE, Sato B, Jarman S, Efimov IR, Janks DL, Srivastava A, et al. Mechanisms of cardiac and renal dysfunction in sufferers dying of sepsis. Am J Respir Crit Care Med. 2013;187:509–17.
Plotnikov EY, Pevzner IB, Zorova LD, Chernikov VP, Prusov AN, Kireev II, Silachev DN, Skulachev VP, Zorov DB. Mitochondrial injury and mitochondria-targeted antioxidant safety in LPS-induced acute kidney damage. Antioxidants. 2019;8:176.
Yuan S, Akey CW. Apoptosome construction, meeting, and procaspase activation. Construction. 2013;21:501–15.
Cain Okay, Bratton SB, Cohen GM. The Apaf-1 apoptosome: a big caspase-activating advanced. Biochimie. 2002;84:203–14.
van der Slikke EC, Star BS, van Meurs M, Henning RH, Moser J, Bouma HR. Sepsis is related to mitochondrial DNA injury and a decreased mitochondrial mass within the kidney of sufferers with sepsis-AKI. Important Care. 2021;25:36–36.
Ding Y, Zheng Y, Huang J, Peng W, Chen X, Kang X, Zeng Q. UCP2 ameliorates mitochondrial dysfunction, irritation, and oxidative stress in lipopolysaccharide-induced acute kidney damage. Int Immunopharmacol. 2019;71:336–49.
Divakaruni AS, Model MD. The regulation and physiology of mitochondrial proton leak. Physiology. 2011;26:192–205.
Devarajan P. Mobile and molecular derangements in acute tubular necrosis. Curr Opin Pediatr. 2005;17:193–9.
Kosieradzki M, Rowinski W. Ischemia/reperfusion damage in kidney transplantation: mechanisms and prevention. Transplant Proc. 2008;40:3279–88.
Orrenius S, Zhivotovsky B, Nicotera P. Regulation of cell loss of life: the calcium-apoptosis hyperlink. Nat Rev Mol Cell Biol. 2003;4:552–65.
Basile DP, Donohoe DL, Roethe Okay, Mattson DL. Persistent renal hypoxia after acute ischemic damage: results of l-arginine on hypoxia and secondary injury. Am J Physiol-Renal Physiol. 2003;284:F338–48.
Fu Q, Colgan SP, Shelley CS. Hypoxia: the drive that drives persistent kidney illness. Clin Med Res. 2016;14:15–39.
Hirakawa Y, Tanaka T, Nangaku M. Renal hypoxia in CKD pathophysiology and detecting strategies. Entrance Physiol. 2017;8:99.
Kapitsinou PP, Sano H, Michael M, Kobayashi H, Davidoff O, Bian A, Yao B, Zhang MZ, Harris RC, Duffy KJ, et al. Endothelial HIF-2 mediates safety and restoration from ischemic kidney damage. J Clin Make investments. 2014;124:2396–409.
Yang Y, Yu X, Zhang Y, Ding G, Zhu C, Huang S, Jia Z, Zhang A. Hypoxia-inducible issue prolyl hydroxylase inhibitor roxadustat (FG-4592) protects in opposition to cisplatin-induced acute kidney damage. Clin Sci. 2018;132:825–38.
Fahling M, Mathia S, Paliege A, Koesters R, Mrowka R, Peters H, Persson PB, Neumayer HH, Bachmann S, Rosenberger C. Tubular von Hippel-Lindau knockout protects in opposition to rhabdomyolysis-induced AKI. J Am Soc Nephrol. 2013;24:1806–19.
Semenza GL. Hypoxia-inducible components: coupling glucose metabolism and redox regulation with induction of the breast most cancers stem cell phenotype. EMBO J. 2017;36:252–9.
Lacher SE, Levings DC, Freeman S, Slattery M. Identification of a practical antioxidant response component on the HIF1A locus. Redox Biol. 2018;19:401–11.
Gorlach A, Dimova EY, Petry A, Martinez-Ruiz A, Hernansanz-Agustin P, Rolo AP, Palmeira CM, Kietzmann T. Reactive oxygen species, vitamin, hypoxia and illnesses: issues solved? Redox Biol. 2015;6:372–85.
Lee FS, Percy MJ. The HIF pathway and erythrocytosis. Annu Rev Pathol. 2011;6(6):165–92.
Beck I, Weinmann R, Caro J. Characterization of hypoxia-responsive enhancer within the human erythropoietin gene reveals presence of hypoxia-inducible 120-Kd nuclear DNA-binding protein in erythropoietin-producing and nonproducing cells. Blood. 1993;82:704–11.
Zou AP, Cowley AW Jr. Reactive oxygen species and molecular regulation of renal oxygenation. Acta Physiol Scand. 2003;179:233–41.
O’Connor PM, Kett MM, Anderson WP, Evans RG. Renal medullary tissue oxygenation depends on each cortical and medullary blood circulate. Am J Physiol-Renal Physiol. 2006;290:F688–94.
Melillo G, Musso T, Sica A, Taylor LS, Cox GW, Varesio L. A hypoxia-responsive component mediates a novel pathway of activation of the inducible nitric oxide synthase promoter. J Exp Med. 1995;182:1683–93.
Higgins DF, Kimura Okay, Bernhardt WM, Shrimanker N, Akai Y, Hohenstein B, Saito Y, Johnson RS, Kretzler M, Cohen CD, et al. Hypoxia promotes fibrogenesis in vivo through HIF-1 stimulation of epithelial-to-mesenchymal transition. J Clin Make investments. 2007;117:3810–20.
Tanaka S, Tanaka T, Nangaku M. CALL FOR PAPERS Renal hypoxia hypoxia as a key participant within the AKI-to-CKD transition. Am J Physiol-Renal Physiol. 2014;307:F1187–95.
Ullah MM, Basile DP. Function of renal hypoxia within the development from acute kidney damage to persistent kidney illness. Semin Nephrol. 2019;39:567–80.
Evans RG, Ince C, Joles JA, Smith DW, Might CN, O’Connor PM, Gardiner BS. Haemodynamic influences on kidney oxygenation: medical implications of integrative physiology. Clin Exp Pharmacol Physiol. 2013;40:106–22.
Evans RG, Gardiner BS, Smith DW, O’Connor PM. Intrarenal oxygenation: distinctive challenges and the biophysical foundation of homeostasis. Am J Physiol Renal Physiol. 2008;295:F1259-1270.
Chen FM, Liu X. Advancing biomaterials of human origin for tissue engineering. Prog Polym Sci. 2016;53:86–168.
Hoshyar N, Grey S, Han H, Bao G. The impact of nanoparticle measurement on in vivo pharmacokinetics and mobile interplay. Nanomedicine. 2016;11:673–92.
Zhang L, Gu FX, Chan JM, Wang AZ, Langer RS, Farokhzad OC. Nanoparticles in drugs: therapeutic functions and developments. Clin Pharmacol Ther. 2008;83:761–9.
Rudramurthy GR, Swamy MK. Potential functions of engineered nanoparticles in drugs and biology: an replace. J Biol Inorg Chem. 2018;23:1185–204.
Mudshinge SR, Deore AB, Patil S, Bhalgat CM. Nanoparticles: rising carriers for drug supply. Saudi Pharm J. 2011;19:129–41.
Chen HL, Liu ZM, Jiang O, Zhang JY, Huang J, You XR, Liang ZQ, Tao W, Wu J. Nanocomposite of Au and black phosphorus quantum dots as versatile probes for amphibious SERS spectroscopy, 3D photoacoustic imaging and most cancers remedy. Big. 2021;8:100073.
Dai YJ, Ding YM, Li LN. Nanozymes for regulation of reactive oxygen species and illness remedy. Chin Chem Lett. 2021;32:2715–28.
Liu Y, Li D, Ding JX, Chen XS. Managed synthesis of polypeptides. Chin Chem Lett. 2020;31:3001–14.
Mody VV, Siwale R, Singh A, Mody HR. Introduction to metallic nanoparticles. J Pharm Bioallied Sci. 2010;2:282–9.
Cheng L, Jiang DW, Kamkaew A, Valdovinos HF, Im HJ, Feng LZ, England CG, Goel S, Barnhart TE, Liu Z, Cai WB. Renal-clearable PEGylated porphyrin nanoparticles for image-guided photodynamic most cancers remedy. Adv Funct Mater. 2017;27:1702928.
Zhang DY, Younis MR, Liu HK, Lei S, Wan YL, Qu JL, Lin J, Huang P. Multi-enzyme mimetic ultrasmall iridium nanozymes as reactive oxygen/ nitrogen species scavengers for acute kidney damage administration. Biomaterials. 2021;271:120706.
Weng QJ, Solar H, Fang CY, Xia F, Liao HW, Lee JY, Wang JC, Xie A, Ren JF, Guo X, et al. Catalytic exercise tunable ceria nanoparticles forestall chemotherapy-induced acute kidney damage with out interference with chemotherapeutics. Nat Commun. 2021;12:1436.
Yu H, Jin FY, Liu D, Shu GF, Wang XJ, Qi J, Solar MC, Yang P, Jiang SP, Ying XY, Du YZ. ROS-responsive nano-drug supply system combining mitochondria-targeting ceria nanoparticles with atorvastatin for acute kidney damage. Theranostics. 2020;10:2342–57.
Hu LZ, Yuan YL, Zhang L, Zhao JM, Majeed S, Xu GB. Copper nanoclusters as peroxidase mimetics and their functions to H2O2 and glucose detection. Anal Chim Acta. 2013;762:83–6.
Huang WC, Lyu LM, Yang YC, Huang MH. Synthesis of Cu2O nanocrystals from cubic to rhombic dodecahedral constructions and their comparative photocatalytic exercise. J Am Chem Soc. 2012;134:1261–7.
Ferreira CA, Ni D, Rosenkrans ZT, Cai W. Scavenging of reactive oxygen and nitrogen species with nanomaterials. Nano Res. 2018;11:4955–84.
Sheng JL, Chen JH, Kang JH, Yu Y, Yan N, Fu XZ, Solar R, Wong CP. Octahedral [email protected](OH)(2) nanocages with hierarchical flake-like partitions and yolk-shell constructions for enhanced electrocatalytic exercise. ChemCatChem. 2019;11:2520–5.
Liu TF, Xiao BW, Xiang F, Tan JL, Chen Z, Zhang XR, Wu CZ, Mao ZW, Luo GX, Chen XY, Deng J. Ultrasmall copper-based nanoparticles for reactive oxygen species scavenging and alleviation of irritation associated illnesses. Nat Commun. 2020;11:2788.
Huang CL, Weng WL, Huang YS, Liao CN. Enhanced photolysis stability of Cu2O grown on Cu nanowires with nanoscale twin boundaries. Nanoscale. 2019;11:13709–13.
Gawande MB, Goswami A, Felpin FX, Asefa T, Huang XX, Silva R, Zou XX, Zboril R, Varma RS. Cu and Cu-based nanoparticles: synthesis and functions in overview catalysis. Chem Rev. 2016;116:3722–811.
Liu Z, Xie LN, Qiu KQ, Liao XX, Rees TW, Zhao ZZ, Ji LN, Chao H. An ultrasmall RuO2 nanozyme exhibiting multienzyme-like exercise for the prevention of acute kidney damage. ACS Appl Mater Interfaces. 2020;12:31205–16.
Ni DL, Jiang DW, Kutyreff CJ, Lai JH, Yan YJ, Barnhart TE, Yu B, Im HJ, Kang L, Cho SY, et al. Molybdenum-based nanoclusters act as antioxidants and ameliorate acute kidney damage in mice. Nat Commun. 2018;9:5421.
Reshi MS, Shrivastava S, Jaswal A, Sinha N, Uthra C, Shukla S. Gold nanoparticles ameliorate acetaminophen induced hepato-renal damage in rats. Exp Toxicol Pathol. 2017;69:231–40.
El-Sayed SM, El-Naggar ME, Hussein J, Medhat D, El-Banna M. Impact of Ficus carica L. leaves extract loaded gold nanoparticles in opposition to cisplatin-induced acute kidney damage. Colloids Surf B Biointerfaces. 2019;184:110465.
Gao J, Liu YF, Jiang B, Cao WM, Kan YS, Chen W, Ding M, Zhang GY, Zhang BW, Xi Okay, et al. Phenylenediamine-based carbon nanodots alleviate acute kidney damage through preferential renal accumulation and antioxidant capability. ACS Appl Mater Interfaces. 2020;12:31745–56.
Wang H, Yu DQ, Fang J, Zhou Y, Li DW, Liu Z, Ren JS, Qu XG. Phenol-like group functionalized graphene quantum dots structurally mimicking pure antioxidants for extremely environment friendly acute kidney damage therapy. Chem Sci. 2020;11:12721–30.
Alidori S, Akhavein N, Thorek DLJ, Behling Okay, Romin Y, Queen D, Beattie BJ, Manova-Todorova Okay, Bergkvist M, Scheinberg DA, McDevitt MR. Focused fibrillar nanocarbon RNAi therapy of acute kidney damage. Sci Transl Med. 2016;8:331ra39.
Li F, Li TY, Solar CX, Xia JH, Jiao Y, Xu HP. Selenium-doped carbon quantum dots for free-radical scavenging. Angew Chem-Int Ed. 2017;56:9910–4.
Zhao SJ, Lan MH, Zhu XY, Xue HT, Ng TW, Meng XM, Lee CS, Wang PF, Zhang WJ. Inexperienced synthesis of bifunctional fluorescent carbon dots from garlic for mobile imaging and free radical scavenging. ACS Appl Mater Interfaces. 2015;7:17054–60.
Chen HM, Qiu YW, Ding DD, Lin HR, Solar WJ, Wang GD, Huang WC, Zhang WZ, Lee D, Liu G, et al. Gadolinium-encapsulated graphene carbon nanotheranostics for imaging-guided photodynamic remedy. Adv Mater. 2018;30:1802748.
Khurana A, Tekula S, Saifi MA, Venkatesh P, Godugu C. Therapeutic functions of selenium nanoparticles. Biomed Pharmacother. 2019;111:802–12.
Rosenkrans ZT, Solar TW, Jiang DW, Chen WY, Barnhart TE, Zhang ZY, Ferreira CA, Wang XD, Engle JW, Huang P, Cai WB. Selenium-doped carbon quantum dots act as broad-spectrum antioxidants for acute kidney damage administration. Adv Sci. 2020;7:2000420.
Hou DZ, Xie CS, Huang KJ, Zhu CH. The manufacturing and traits of strong lipid nanoparticles (SLNs). Biomaterials. 2003;24:1781–5.
Thukral DK, Dumoga S, Mishra AK. Stable lipid nanoparticles: promising therapeutic nanocarriers for drug supply. Curr Drug Deliv. 2014;11:771–91.
Misra S, Chopra Okay, Sinha VR, Medhi B. Galantamine-loaded solid-lipid nanoparticles for enhanced mind supply: preparation, characterization, in vitro and in vivo evaluations. Drug Deliv. 2016;23:1434–43.
Pawar H, Surapaneni SK, Tikoo Okay, Singh C, Burman R, Gill MS, Suresh S. Folic acid functionalized long-circulating co-encapsulated docetaxel and curcumin strong lipid nanoparticles: in vitro analysis, pharmacokinetic and biodistribution in rats. Drug Deliv. 2016;23:1453–68.
Liu B, Han L, Liu J, Han S, Chen Z, Jiang L. Co-delivery of paclitaxel and TOS-cisplatin through TAT-targeted strong lipid nanoparticles with synergistic antitumor exercise in opposition to cervical most cancers. Int J Nanomed. 2017;12:955–68.
Hu JB, Music GL, Liu D, Li SJ, Wu JH, Kang XQ, Qi J, Jin FY, Wang XJ, Xu XL, et al. Sialic acid-modified strong lipid nanoparticles as vascular endothelium-targeting carriers for ischemia-reperfusion-induced acute renal damage. Drug Deliv. 2017;24:1856–67.
Liu H, Zhang H, Yin N, Zhang Y, Gou J, Yin T, He H, Ding H, Zhang Y, Tang X. Sialic acid-modified dexamethasone lipid calcium phosphate gel core nanoparticles for goal therapy of kidney damage. Biomater Sci. 2020;8:3871–84.
Hata A, Lieberman J. Dysregulation of microRNA biogenesis and gene silencing in most cancers. Sci Sign. 2015;8:re3.
Zhang S, Solar H, Kong W, Zhang B. Useful position of microRNA-500a-3P-loaded liposomes within the therapy of cisplatin-induced AKI. IET Nanobiotechnol. 2020;14:465–9.
Yoshitomi T, Hirayama A, Nagasaki Y. The ROS scavenging and renal protecting results of pH-responsive nitroxide radical-containing nanoparticles. Biomaterials. 2011;32:8021–8.
Liu D, Shu GF, Jin FY, Qi J, Xu XL, Du Y, Yu H, Wang J, Solar MC, You YC, et al. ROS-responsive chitosan-SS31 prodrug for AKI remedy through fast distribution within the kidney and long-term retention within the renal tubule. Sci Adv. 2020;6:eabb7422.
Wang LY, You XR, Dai CL, Fang YF, Wu J. Growth of poly(p-coumaric acid) as a self-anticancer nanocarrier for environment friendly and biosafe most cancers remedy. Biomater Sci. 2022;10:2263–74.
You XR, Wang LY, Wang L, Wu J. Rebirth of aspirin synthesis by-product: prickly poly(salicylic acid) nanoparticles as self-anticancer drug service. Adv Funct Mater. 2021;31:2100805.
Wang YQ, Li CJ, Du L, Liu Y. A reactive oxygen species-responsive dendrimer with low cytotoxicity for environment friendly and focused gene supply. Chin Chem Lett. 2020;31:275–80.
Liu D, Jin FY, Shu GF, Xu XL, Qi J, Kang XQ, Yu H, Lu KJ, Jiang SP, Han F, et al. Enhanced effectivity of mitochondria-targeted peptide SS-31 for acute kidney damage by pH-responsive and AKI-kidney focused nanopolyplexes. Biomaterials. 2019;211:57–67.
Rampanelli E, Dessing MC, Claessen N, Teske GJD, Joosten SPJ, Friends ST, Leemans JC, Florquin S. CD44-deficiency attenuates the immunologic responses to LPS and delays the onset of endotoxic shock-induced renal irritation and dysfunction. PLoS ONE. 2013;8:e84479.
Herrera MB, Bussolati B, Bruno S, Morando L, Mauriello-Romanazzi G, Sanavio F, Stamenkovic I, Biancone L, Camussi G. Exogenous mesenchymal stem cells localize to the kidney via CD44 following acute tubular damage. Kidney Int. 2007;72:430–41.
Lewington AJP, Padanilam BJ, Martin DR, Hammerman MR. Expression of CD44 in kidney after acute ischemic damage in rats. Am J Physiol-Regul Integr Comp Physiol. 2000;278:R247–54.
Hu JB, Kang XQ, Liang J, Wang XJ, Xu XL, Yang P, Ying XY, Jiang SP, Du YZ. E-selectin-targeted sialic acid-peg-dexamethasone micelles for enhanced anti-inflammatory efficacy for acute kidney damage. Theranostics. 2017;7:2204–19.
Lawrence MG, Altenburg MK, Sanford R, Willett JD, Bleasdale B, Ballou B, Wilder J, Li F, Miner JH, Berg UB, Smithies O. Permeation of macromolecules into the renal glomerular basement membrane and seize by the tubules. Proc Natl Acad Sci USA. 2017;114:2958–63.
Yu H, Lin TS, Chen W, Cao WM, Zhang CW, Wang TW, Ding M, Zhao S, Wei H, Guo HQ, Zhao XZ. Measurement and temporal-dependent efficacy of oltipraz-loaded PLGA nanoparticles for therapy of acute kidney damage and fibrosis. Biomaterials. 2019;219:119368.
Nilsson L, Madsen Okay, Topcu SO, Jensen BL, Frokiaer J, Norregaard R. Disruption of cyclooxygenase-2 prevents downregulation of cortical AQP2 and AQP3 in response to bilateral ureteral obstruction within the mouse. Am J Physiol Renal Physiol. 2012;302:F1430-1439.
Norregaard R, Jensen BL, Topcu SO, Nielsen SS, Walter S, Djurhuus JC, Frokiaer J. Cyclooxygenase kind 2 is elevated in obstructed rat and human ureter and contributes to pelvic stress improve after obstruction. Kidney Int. 2006;70:872–81.
Norregaard R, Jensen BL, Topcu SO, Wang GX, Schweer H, Nielsen S, Frokiaer J. Urinary tract obstruction induces transient accumulation of COX-2-derived prostanoids in kidney tissue. Am J Physiol-Regul Integr Comp Physiol. 2010;298:R1017–25.
Miyajima A, Ito Okay, Asano T, Seta Okay, Ueda A, Hayakawa M. Does cyclooxygenase-2 inhibitor forestall renal tissue injury in unilateral ureteral obstruction? J Urol. 2001;166:1124–9.
Yang CX, Nilsson L, Cheema MU, Wang Y, Frokiaer J, Gao S, Kjems J, Norregaard R. Chitosan/siRNA nanoparticles focusing on cyclooxygenase kind 2 attenuate unilateral ureteral obstruction-induced kidney damage in mice. Theranostics. 2015;5:110–23.
Zhang DY, Liu HK, He T, Younis MR, Tu TH, Yang C, Zhang J, Lin J, Qu JL, Huang P. Biodegradable self-assembled ultrasmall nanodots as reactive oxygen/nitrogen species scavengers for theranostic software in acute kidney damage. Small. 2021;17:119368.
Liu S, Gao X, Wang Y, Wang J, Qi X, Dong Okay, Shi D, Wu X, Guo C. Baicalein-loaded silk fibroin peptide nanofibers shield in opposition to cisplatin-induced acute kidney damage: Fabrication, characterization and mechanism. Int J Pharm. 2022;626:122161.
Hou JJ, Wang H, Ge ZL, Zuo TT, Chen Q, Liu XG, Mou S, Fan CH, Xie Y, Wang LH. Treating acute kidney damage with antioxidative black phosphorus nanosheets. Nano Lett. 2020;20:1447–54.
Zhao X, Wang LY, Li JM, Peng LM, Tang CY, Zha XJ, Ke Okay, Yang MB, Su BH, Yang W. Redox-mediated synthetic non-enzymatic antioxidant MXene nanoplatforms for acute kidney damage alleviation. Adv Sci. 2021;8:2101498.
Foroutan T, Nafar M, Motamedi E. Intraperitoneal injection of graphene oxide nanoparticle accelerates stem cell remedy results on acute kidney damage. Stem Cells Cloning-Adv Appl. 2020;13:21–32.
Fu J, Chang L. Fabrication of fasudil hydrochloride modified graphene oxide biocomposites and its defensive impact acute renal damage in septicopyemia rats. J Photochem Photobiol B-Biol. 2018;186:125–30.
Lieber CM. One-dimensional nanostructures: chemistry, physics and functions. Stable State Commun. 1998;107:607–16.
Guo B, Wang SH, Wu ZX, Wang ZX, Wang DH, Huang H, Zhang F, Ge YQ, Zhang H. Sub-200 fs soliton mode-locked fiber laser based mostly on bismuthene saturable absorber. Choose Specific. 2018;26:22750–60.
Music YF, Liang ZM, Jiang XT, Chen YX, Li ZJ, Lu L, Ge YQ, Wang Okay, Zheng JL, Lu SB, et al. Few-layer antimonene embellished microfiber: ultra-short pulse technology and all-optical thresholding with enhanced long run stability. 2D Supplies. 2017;4:045010.
Yang J, Su T, Zou H, Yang G, Ding J, Chen X. Spatiotemporally focused polypeptide nanoantidotes enhance chemotherapy tolerance of cisplatin. Angew Chem Int Ed Engl. 2022;e202211136.
Al-Jamal KT, Gherardini L, Bardi G, Nunes A, Guo C, Bussy C, Herrero MA, Bianco A, Prato M, Kostarelos Okay, Pizzorusso T. Useful motor restoration from mind ischemic insult by carbon nanotube-mediated siRNA silencing. Proc Natl Acad Sci USA. 2011;108:10952–7.
Bartholomeusz G, Cherukuri P, Kingston J, Cognet L, Lemos R Jr, Leeuw TK, Gumbiner-Russo L, Weisman RB, Powis G. In vivo therapeutic silencing of hypoxia-inducible issue 1 alpha (HIF-1 alpha) utilizing single-walled carbon nanotubes noncovalently coated with siRNA. Nano Res. 2009;2:279–91.
Scheinberg DA, Villa CH, Escorcia FE, McDevitt MR. Conscripts of the infinite armada: systemic most cancers remedy utilizing nanomaterials. Nat Rev Clin Oncol. 2010;7:266–76.
Mulvey JJ, Villa CH, McDevitt MR, Escorcia FE, Casey E, Scheinberg DA. Self-assembly of carbon nanotubes and antibodies on tumours for focused amplified supply. Nat Nanotechnol. 2013;8:763–71.
Ruggiero A, Villa CH, Bander E, Rey DA, Bergkvist M, Batt CA, Manova-Todorova Okay, Deen WM, Scheinberg DA, McDevitt MR. Paradoxical glomerular filtration of carbon nanotubes. Proc Natl Acad Sci USA. 2010;107:12369–74.
McDevitt MR, Chattopadhyay D, Jaggi JS, Finn RD, Zanzonico PB, Villa C, Rey D, Mendenhall J, Batt CA, Njardarson JT, Scheinberg DA. PET imaging of soluble yttrium-86-labeled carbon nanotubes in mice. PLoS ONE. 2007;2:e907.
Liu JL, Hui D, Lau D. Two-dimensional nanomaterial-based polymer composites: Fundamentals and functions. Nanotechnol Rev. 2022;11:770–92.
Wang YM, Feng W, Chen Y. Chemistry of two-dimensional MXene nanosheets in theranostic nanomedicine. Chin Chem Lett. 2020;31:937–46.
Hao JL, Wang WJ, Zhao JW, Che HL, Chen L, Sui X. Development and software of bioinspired nanochannels based mostly on two-dimensional supplies. Chin Chem Lett. 2022;33:2291–300.
Ding J, Xiao H, Chen X. Superior biosafety supplies for prevention and theranostics of biosafety points. Biosaf Well being. 2022;4:59–60.
Li LK, Yu YJ, Ye GJ, Ge QQ, Ou XD, Wu H, Feng DL, Chen XH, Zhang YB. Black phosphorus field-effect transistors. Nat Nanotechnol. 2014;9:372–7.
Shao JD, Xie HH, Huang H, Li ZB, Solar ZB, Xu YH, Xiao QL, Yu XF, Zhao YT, Zhang H, et al. Biodegradable black phosphorus-based nanospheres for in vivo photothermal most cancers remedy. Nat Commun. 2016;7:3923.
Zhou QH, Chen Q, Tong YL, Wang JL. Mild-induced ambient degradation of few-layer black phosphorus: mechanism and safety. Angew Chem-Int Ed. 2016;55:11437–41.
Huang Okay, Li ZJ, Lin J, Han G, Huang P. Two-dimensional transition steel carbides and nitrides (MXenes) for biomedical functions. Chem Soc Rev. 2018;47:5109–24.
Soleymaniha M, Shahbazi MA, Rafieerad AR, Maleki A, Amiri A. Selling position of MXene nanosheets in biomedical sciences: therapeutic and biosensing improvements. Adv Healthc Mater. 2019;8:1801137.
Lin H, Chen Y, Shi JL. Insights into 2D MXenes for versatile biomedical functions: present advances and challenges forward. Adv Sci. 2018;5:1800518.
Zhang CFJ, Pinilla S, McEyoy N, Cullen CP, Anasori B, Lengthy E, Park SH, Seral-Ascaso A, Shmeliov A, Krishnan D, et al. Oxidation stability of colloidal two-dimensional titanium carbides (MXenes). Chem Mater. 2017;29:4848–56.
Jastrzebska AM, Szuplewska A, Wojciechowski T, Chudy M, Ziemkowska W, Chlubny L, Rozmyslowska A, Olszyna A. In vitro research on cytotoxicity of delaminated Ti3C2 MXene. J Hazard Mater. 2017;339:1–8.
Martindale JL, Holbrook NJ. Mobile response to oxidative stress: signaling for suicide and survival. J Cell Physiol. 2002;192:1–15.
Kim J, Choi KS, Kim Y, Lim KT, Seonwoo H, Park Y, Kim DH, Choung PH, Cho CS, Kim SY, et al. Bioactive results of graphene oxide cell tradition substratum on construction and performance of human adipose-derived stem cells. J Biomed Mater Res Half A. 2013;101:3520–30.
Bai H, Li C, Wang XL, Shi GQ. A pH-sensitive graphene oxide composite hydrogel. Chem Commun. 2010;46:2376–8.