Low dimensional nanomaterials for treating acute kidney damage | Journal of Nanobiotechnology


  • Hoste EAJ, Kellum JA, Selby NM, Zarbock A, Palevsky PM, Bagshaw SM, Goldstein SL, Cerda J, Chawla LS. World epidemiology and outcomes of acute kidney damage. Nat Rev Nephrol. 2018;14:607–25.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Susantitaphong P, Cruz DN, Cerda J, Abulfaraj M, Alqahtani F, Koulouridis I, Jaber BL. Acute Kidney Harm Advisory Group of the American Society of N: World incidence of AKI: a meta-analysis. Clin J Am Soc Nephrol. 2013;8:1482–93.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P, Workgroup A. Acute renal failure – definition, end result measures, animal fashions, fluid remedy and data know-how wants: the Second Worldwide Consensus Convention of the Acute Dialysis High quality Initiative (ADQI) Group. Crit Care. 2004;8:R204–12.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ostermann M, Bellomo R, Burdmann EA, Doi Okay, Endre ZH, Goldstein SL, Kane-Gill SL, Liu KD, Prowle JR, Shaw AD, et al. Controversies in acute kidney damage: conclusions from a Kidney Illness: enhancing World Outcomes (KDIGO) Convention. Kidney Int. 2020;98:294–309.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mehta RL, Kellum JA, Shah SV, Molitoris BA, Ronco C, Warnock DG, Levin A. Acute kidney damage community: report of an initiative to enhance outcomes in acute kidney damage. Crit Care. 2007;11:439-442.

    Article 

    Google Scholar
     

  • Haase M, Devarajan P, Haase-Fielitz A, Bellomo R, Cruz DN, Wagener G, Krawczeski CD, Koyner JL, Murray P, Zappitelli M, et al. The end result of neutrophil gelatinase-associated lipocalin-positive subclinical acute kidney damage: a multicenter pooled evaluation of potential research. J Am Coll Cardiol. 2011;57:1752–61.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kashani Okay, Cheungpasitporn W, Ronco C. Biomarkers of acute kidney damage: the pathway from discovery to medical adoption. Clin Chem Lab Med. 2017;55:1074–89.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nickolas TL, O’Rourke MJ, Yang J, Sise ME, Canetta PA, Barasch N, Buchen C, Khan F, Mori Okay, Gigllo J, et al. Sensitivity and specificity of a single emergency division measurement of urinary neutrophil gelatinase-associated lipocalin for diagnosing acute kidney damage. Ann Intern Med. 2008;148:810-U821.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moriyama T, Hagihara S, Shiramomo T, Nagaoka M, Iwakawa S, Kanmura Y. Comparability of three early biomarkers for acute kidney damage after cardiac surgical procedure beneath cardiopulmonary bypass. J Intensive Care. 2016;4:41–41.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu J, Zhao Y, Li ZQ, Chen Q, Luo CQ, Su JX, Wang YM. Biomarkers for detecting and enhancing AKI after liver transplantation: from analysis to therapy. Transplant Rev. 2021;35:100612.

    Article 

    Google Scholar
     

  • MacLeod A. NCEPOD report on acute kidney injury-must do higher. Lancet. 2009;374:1405–6.

    Article 
    PubMed 

    Google Scholar
     

  • Williams RM, Jaimes EA, Heller DA. Nanomedicines for kidney illnesses. Kidney Int. 2016;90:740–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Younis MA, Tawfeek HM, Abdellatif AAH, Abdel-Aleem JA, Harashima H. Medical translation of nanomedicines: challenges, alternatives, and keys. Adv Drug Deliv Rev. 2022;181:114083.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng C, Li M, Ding J. Challenges and alternatives of nanomedicines in medical translation. BIO Integr. 2021;2:57–60.

    Article 

    Google Scholar
     

  • Wang LF, Zhang YJ, Li YY, Chen JH, Lin WQ. Latest advances in engineered nanomaterials for acute kidney damage theranostics. Nano Res. 2021;14:920–33.

    Article 
    CAS 

    Google Scholar
     

  • Bellomo R, Might C, Wan L. Acute renal failure and sepsis. N Engl J Med. 2004;351:2347–9 (Writer reply 2347-2349).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Filomeni G, De Zio D, Cecconi F. Oxidative stress and autophagy: the conflict between injury and metabolic wants. Cell Loss of life Differ. 2015;22:377–88.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cruz CM, Rinna A, Forman HJ, Ventura AL, Persechini PM, Ojcius DM. ATP prompts a reactive oxygen species-dependent oxidative stress response and secretion of proinflammatory cytokines in macrophages. J Biol Chem. 2007;282:2871–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chandel NS, Maltepe E, Goldwasser E, Mathieu CE, Simon MC, Schumacker PT. Mitochondrial reactive oxygen species set off hypoxia-induced transcription. Proc Natl Acad Sci USA. 1998;95:11715–20.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scherz-Shouval R, Shvets E, Fass E, Shorer H, Gil L, Elazar Z. Reactive oxygen species are important for autophagy and particularly regulate the exercise of Atg4. EMBO J. 2019;38:e101812.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Droge W. Free radicals within the physiological management of cell operate. Physiol Rev. 2002;82:47–95.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Genestra M. Oxyl radicals, redox-sensitive signalling cascades and antioxidants. Cell Sign. 2007;19:1807–19.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pacher P, Beckman JS, Liaudet L. Nitric oxide and peroxynitrite in well being and illness. Physiol Rev. 2007;87:315–424.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hrelia S, Angeloni C. New mechanisms of motion of pure antioxidants in well being and illness II. Antioxidants. 2021;10:1200.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Halliwell B. Biochemistry of oxidative stress. Biochem Soc Trans. 2007;35:1147–50.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Willcox JK, Ash SL, Catignani GL. Antioxidants and prevention of persistent illness. Crit Rev Meals Sci Nutr. 2004;44:275–95.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Frei B. Reactive oxygen species and antioxidant nutritional vitamins: mechanisms of motion. Am J Med. 1994;97:5S-13S.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nishida N, Arizumi T, Takita M, Kitai S, Yada N, Hagiwara S, Inoue T, Minami Y, Ueshima Okay, Sakurai T, Kudo M. Reactive oxygen species induce epigenetic instability via the formation of 8-hydroxydeoxyguanosine in human hepatocarcinogenesis. Dig Dis. 2013;31:459–66.

    Article 
    PubMed 

    Google Scholar
     

  • Yasui M, Kanemaru Y, Kamoshita N, Suzuki T, Arakawa T, Honma M. Tracing the fates of site-specifically launched DNA adducts within the human genome. DNA Restore. 2014;15:11–20.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Valavanidis A, Vlachogianni T, Fiotakis Okay, Loridas S. Pulmonary oxidative stress, irritation and most cancers: respirable particulate matter, fibrous dusts and ozone as main causes of lung carcinogenesis via reactive oxygen species mechanisms. Int J Environ Res Public Well being. 2013;10:3886–907.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Juncos R, Garvin JL. Superoxide enhances Na-Okay-2Cl cotransporter exercise within the thick ascending limb. Am J Physiol-Renal Physiol. 2005;288:F982–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao CH, Edwards A, Sendeski M, Lee-Kwon W, Cui L, Cai CY, Patzak A, Pallone TL. Intrinsic nitric oxide and superoxide manufacturing regulates descending vasa recta contraction. Am J Physiol-Renal Physiol. 2010;299:F1056–64.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hauser CJ. Activated polymorphonuclear leukocytes improve manufacturing of leukocyte microparticles with elevated adhesion molecules in sufferers with sepsis-Editorial remark. J Trauma-Harm Infect Crit Care. 2002;52:448–448.


    Google Scholar
     

  • Chelazzi C, Villa G, Mancinelli P, De Gaudio AR, Adembri C. Glycocalyx and sepsis-induced alterations in vascular permeability. Crit Care. 2015;19:26.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bonventre JV, Yang L. Mobile pathophysiology of ischemic acute kidney damage. J Clin Make investments. 2011;121:4210–21.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sutton TA, Kelly KJ, Mang HE, Plotkin Z, Sandoval RM, Dagher PC. Minocycline reduces renal microvascular leakage in a rat mannequin of ischemic renal damage. Am J Physiol Renal Physiol. 2005;288:F91-97.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kunugi S, Shimizu A, Kuwahara N, Du X, Takahashi M, Terasaki Y, Fujita E, Mii A, Nagasaka S, Akimoto T, et al. Inhibition of matrix metalloproteinases reduces ischemia-reperfusion acute kidney damage. Lab Make investments. 2011;91:170–80.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Molitoris BA, Sutton TA. Endothelial damage and dysfunction: position within the extension section of acute renal failure. Kidney Int. 2004;66:496–9.

    Article 
    PubMed 

    Google Scholar
     

  • Kelly KJ, Williams WW Jr, Colvin RB, Meehan SM, Springer TA, Gutierrez-Ramos JC, Bonventre JV. Intercellular adhesion molecule-1-deficient mice are protected in opposition to ischemic renal damage. J Clin Make investments. 1996;97:1056–63.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kelly KJ, Williams WW Jr, Colvin RB, Bonventre JV. Antibody to intercellular adhesion molecule 1 protects the kidney in opposition to ischemic damage. Proc Natl Acad Sci USA. 1994;91:812–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Singbartl Okay, Inexperienced SA, Ley Okay. Blocking P-selectin protects from ischemia/reperfusion-induced acute renal failure. FASEB J. 2000;14:48–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kelly KJ, Molitoris BA. Acute renal failure within the new millennium: time to think about mixture remedy. Semin Nephrol. 2000;20:4–19.

    CAS 
    PubMed 

    Google Scholar
     

  • Schofield ZV, Woodruff TM, Halai R, Wu MC, Cooper MA. Neutrophils–a key element of ischemia-reperfusion damage. Shock. 2013;40:463–70.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kinsey GR, Li L, Okusa MD. Irritation in acute kidney damage. Nephron Exp Nephrol. 2008;109:e102-107.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Frangogiannis NG. Chemokines in ischemia and reperfusion. Thromb Haemost. 2007;97:738–47.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Korkmaz A, Kolankaya D. The protecting results of ascorbic acid in opposition to renal ischemia-reperfusion damage in male rats. Ren Fail. 2009;31:36–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dosluoglu HH, Aktan AO, Yegen C, Okboy N, Yalcm AS, Yahn R, Ercan S. The cytoprotective results of verapamil and iloprost (ZK 36374) on ischemia/reperfusion damage of kidneys. Transpl Int. 1993;6:138–42.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Heinzelmann M, Mercer-Jones MA, Passmore JC. Neutrophils and renal failure. Am J Kidney Dis. 1999;34:384–99.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li L, Huang L, Sung SS, Vergis AL, Rosin DL, Rose CE Jr, Lobo PI, Okusa MD. The chemokine receptors CCR2 and CX3CR1 mediate monocyte/macrophage trafficking in kidney ischemia-reperfusion damage. Kidney Int. 2008;74:1526–37.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li L, Okusa MD. Macrophages, dendritic cells, and kidney ischemia-reperfusion damage. Semin Nephrol. 2010;30:268–77.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parikh SM, Yang Y, He L, Tang C, Zhan M, Dong Z. Mitochondrial operate and disturbances within the septic kidney. Semin Nephrol. 2015;35:108–19.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ince C, Mik EG. Microcirculatory and mitochondrial hypoxia in sepsis, shock, and resuscitation. J Appl Physiol. 1985;2016(120):226–35.


    Google Scholar
     

  • Guzy RD, Schumacker PT. Oxygen sensing by mitochondria at advanced III: the paradox of elevated reactive oxygen species throughout hypoxia. Exp Physiol. 2006;91:807–19.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bar-Or D, Carrick MM, Mains CW, Rael LT, Slone D, Brody EN. Sepsis, oxidative stress, and hypoxia: are there clues to higher therapy? Redox Rep. 2015;20:193–7.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nagar H, Piao S, Kim CS. Function of mitochondrial oxidative stress in sepsis. Acute Crit Care. 2018;33:65–72.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sureshbabu A, Patino E, Ma KC, Laursen Okay, Finkelsztein EJ, Akchurin O, Muthukumar T, Ryter SW, Gudas L, Choi AMK, Choi ME. RIPK3 promotes sepsis-induced acute kidney damage through mitochondrial dysfunction. JCI Perception. 2018;3:e98411.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kitur Okay, Wachtel S, Brown A, Wickersham M, Paulino F, Penaloza HF, Soong G, Bueno S, Parker D, Prince A. Necroptosis promotes Staphylococcus aureus clearance by inhibiting extreme inflammatory signaling. Cell Rep. 2016;16:2219–30.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Duprez L, Takahashi N, Van Hauwermeiren F, Vandendriessche B, Goossens V, Vanden Berghe T, Declercq W, Libert C, Cauwels A, Vandenabeele P. RIP kinase-dependent necrosis drives deadly systemic inflammatory response syndrome. Immunity. 2011;35:908–18.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Brealey D, Model M, Hargreaves I, Heales S, Land J, Smolenski R, Davies NA, Cooper CE, Singer M. Affiliation between mitochondrial dysfunction and severity and end result of septic shock. The Lancet. 2002;360:219–23.

    Article 
    CAS 

    Google Scholar
     

  • Takasu O, Gaut JP, Watanabe E, To Okay, Fagley RE, Sato B, Jarman S, Efimov IR, Janks DL, Srivastava A, et al. Mechanisms of cardiac and renal dysfunction in sufferers dying of sepsis. Am J Respir Crit Care Med. 2013;187:509–17.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Plotnikov EY, Pevzner IB, Zorova LD, Chernikov VP, Prusov AN, Kireev II, Silachev DN, Skulachev VP, Zorov DB. Mitochondrial injury and mitochondria-targeted antioxidant safety in LPS-induced acute kidney damage. Antioxidants. 2019;8:176.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yuan S, Akey CW. Apoptosome construction, meeting, and procaspase activation. Construction. 2013;21:501–15.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cain Okay, Bratton SB, Cohen GM. The Apaf-1 apoptosome: a big caspase-activating advanced. Biochimie. 2002;84:203–14.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • van der Slikke EC, Star BS, van Meurs M, Henning RH, Moser J, Bouma HR. Sepsis is related to mitochondrial DNA injury and a decreased mitochondrial mass within the kidney of sufferers with sepsis-AKI. Important Care. 2021;25:36–36.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ding Y, Zheng Y, Huang J, Peng W, Chen X, Kang X, Zeng Q. UCP2 ameliorates mitochondrial dysfunction, irritation, and oxidative stress in lipopolysaccharide-induced acute kidney damage. Int Immunopharmacol. 2019;71:336–49.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Divakaruni AS, Model MD. The regulation and physiology of mitochondrial proton leak. Physiology. 2011;26:192–205.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Devarajan P. Mobile and molecular derangements in acute tubular necrosis. Curr Opin Pediatr. 2005;17:193–9.

    Article 
    PubMed 

    Google Scholar
     

  • Kosieradzki M, Rowinski W. Ischemia/reperfusion damage in kidney transplantation: mechanisms and prevention. Transplant Proc. 2008;40:3279–88.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Orrenius S, Zhivotovsky B, Nicotera P. Regulation of cell loss of life: the calcium-apoptosis hyperlink. Nat Rev Mol Cell Biol. 2003;4:552–65.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Basile DP, Donohoe DL, Roethe Okay, Mattson DL. Persistent renal hypoxia after acute ischemic damage: results of l-arginine on hypoxia and secondary injury. Am J Physiol-Renal Physiol. 2003;284:F338–48.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fu Q, Colgan SP, Shelley CS. Hypoxia: the drive that drives persistent kidney illness. Clin Med Res. 2016;14:15–39.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hirakawa Y, Tanaka T, Nangaku M. Renal hypoxia in CKD pathophysiology and detecting strategies. Entrance Physiol. 2017;8:99.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kapitsinou PP, Sano H, Michael M, Kobayashi H, Davidoff O, Bian A, Yao B, Zhang MZ, Harris RC, Duffy KJ, et al. Endothelial HIF-2 mediates safety and restoration from ischemic kidney damage. J Clin Make investments. 2014;124:2396–409.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang Y, Yu X, Zhang Y, Ding G, Zhu C, Huang S, Jia Z, Zhang A. Hypoxia-inducible issue prolyl hydroxylase inhibitor roxadustat (FG-4592) protects in opposition to cisplatin-induced acute kidney damage. Clin Sci. 2018;132:825–38.

    Article 
    CAS 

    Google Scholar
     

  • Fahling M, Mathia S, Paliege A, Koesters R, Mrowka R, Peters H, Persson PB, Neumayer HH, Bachmann S, Rosenberger C. Tubular von Hippel-Lindau knockout protects in opposition to rhabdomyolysis-induced AKI. J Am Soc Nephrol. 2013;24:1806–19.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Semenza GL. Hypoxia-inducible components: coupling glucose metabolism and redox regulation with induction of the breast most cancers stem cell phenotype. EMBO J. 2017;36:252–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lacher SE, Levings DC, Freeman S, Slattery M. Identification of a practical antioxidant response component on the HIF1A locus. Redox Biol. 2018;19:401–11.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gorlach A, Dimova EY, Petry A, Martinez-Ruiz A, Hernansanz-Agustin P, Rolo AP, Palmeira CM, Kietzmann T. Reactive oxygen species, vitamin, hypoxia and illnesses: issues solved? Redox Biol. 2015;6:372–85.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee FS, Percy MJ. The HIF pathway and erythrocytosis. Annu Rev Pathol. 2011;6(6):165–92.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Beck I, Weinmann R, Caro J. Characterization of hypoxia-responsive enhancer within the human erythropoietin gene reveals presence of hypoxia-inducible 120-Kd nuclear DNA-binding protein in erythropoietin-producing and nonproducing cells. Blood. 1993;82:704–11.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zou AP, Cowley AW Jr. Reactive oxygen species and molecular regulation of renal oxygenation. Acta Physiol Scand. 2003;179:233–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • O’Connor PM, Kett MM, Anderson WP, Evans RG. Renal medullary tissue oxygenation depends on each cortical and medullary blood circulate. Am J Physiol-Renal Physiol. 2006;290:F688–94.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Melillo G, Musso T, Sica A, Taylor LS, Cox GW, Varesio L. A hypoxia-responsive component mediates a novel pathway of activation of the inducible nitric oxide synthase promoter. J Exp Med. 1995;182:1683–93.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Higgins DF, Kimura Okay, Bernhardt WM, Shrimanker N, Akai Y, Hohenstein B, Saito Y, Johnson RS, Kretzler M, Cohen CD, et al. Hypoxia promotes fibrogenesis in vivo through HIF-1 stimulation of epithelial-to-mesenchymal transition. J Clin Make investments. 2007;117:3810–20.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tanaka S, Tanaka T, Nangaku M. CALL FOR PAPERS Renal hypoxia hypoxia as a key participant within the AKI-to-CKD transition. Am J Physiol-Renal Physiol. 2014;307:F1187–95.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ullah MM, Basile DP. Function of renal hypoxia within the development from acute kidney damage to persistent kidney illness. Semin Nephrol. 2019;39:567–80.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Evans RG, Ince C, Joles JA, Smith DW, Might CN, O’Connor PM, Gardiner BS. Haemodynamic influences on kidney oxygenation: medical implications of integrative physiology. Clin Exp Pharmacol Physiol. 2013;40:106–22.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Evans RG, Gardiner BS, Smith DW, O’Connor PM. Intrarenal oxygenation: distinctive challenges and the biophysical foundation of homeostasis. Am J Physiol Renal Physiol. 2008;295:F1259-1270.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen FM, Liu X. Advancing biomaterials of human origin for tissue engineering. Prog Polym Sci. 2016;53:86–168.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hoshyar N, Grey S, Han H, Bao G. The impact of nanoparticle measurement on in vivo pharmacokinetics and mobile interplay. Nanomedicine. 2016;11:673–92.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang L, Gu FX, Chan JM, Wang AZ, Langer RS, Farokhzad OC. Nanoparticles in drugs: therapeutic functions and developments. Clin Pharmacol Ther. 2008;83:761–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rudramurthy GR, Swamy MK. Potential functions of engineered nanoparticles in drugs and biology: an replace. J Biol Inorg Chem. 2018;23:1185–204.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mudshinge SR, Deore AB, Patil S, Bhalgat CM. Nanoparticles: rising carriers for drug supply. Saudi Pharm J. 2011;19:129–41.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen HL, Liu ZM, Jiang O, Zhang JY, Huang J, You XR, Liang ZQ, Tao W, Wu J. Nanocomposite of Au and black phosphorus quantum dots as versatile probes for amphibious SERS spectroscopy, 3D photoacoustic imaging and most cancers remedy. Big. 2021;8:100073.

    Article 
    CAS 

    Google Scholar
     

  • Dai YJ, Ding YM, Li LN. Nanozymes for regulation of reactive oxygen species and illness remedy. Chin Chem Lett. 2021;32:2715–28.

    Article 
    CAS 

    Google Scholar
     

  • Liu Y, Li D, Ding JX, Chen XS. Managed synthesis of polypeptides. Chin Chem Lett. 2020;31:3001–14.

    Article 
    CAS 

    Google Scholar
     

  • Mody VV, Siwale R, Singh A, Mody HR. Introduction to metallic nanoparticles. J Pharm Bioallied Sci. 2010;2:282–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng L, Jiang DW, Kamkaew A, Valdovinos HF, Im HJ, Feng LZ, England CG, Goel S, Barnhart TE, Liu Z, Cai WB. Renal-clearable PEGylated porphyrin nanoparticles for image-guided photodynamic most cancers remedy. Adv Funct Mater. 2017;27:1702928.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang DY, Younis MR, Liu HK, Lei S, Wan YL, Qu JL, Lin J, Huang P. Multi-enzyme mimetic ultrasmall iridium nanozymes as reactive oxygen/ nitrogen species scavengers for acute kidney damage administration. Biomaterials. 2021;271:120706.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Weng QJ, Solar H, Fang CY, Xia F, Liao HW, Lee JY, Wang JC, Xie A, Ren JF, Guo X, et al. Catalytic exercise tunable ceria nanoparticles forestall chemotherapy-induced acute kidney damage with out interference with chemotherapeutics. Nat Commun. 2021;12:1436.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu H, Jin FY, Liu D, Shu GF, Wang XJ, Qi J, Solar MC, Yang P, Jiang SP, Ying XY, Du YZ. ROS-responsive nano-drug supply system combining mitochondria-targeting ceria nanoparticles with atorvastatin for acute kidney damage. Theranostics. 2020;10:2342–57.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu LZ, Yuan YL, Zhang L, Zhao JM, Majeed S, Xu GB. Copper nanoclusters as peroxidase mimetics and their functions to H2O2 and glucose detection. Anal Chim Acta. 2013;762:83–6.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang WC, Lyu LM, Yang YC, Huang MH. Synthesis of Cu2O nanocrystals from cubic to rhombic dodecahedral constructions and their comparative photocatalytic exercise. J Am Chem Soc. 2012;134:1261–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ferreira CA, Ni D, Rosenkrans ZT, Cai W. Scavenging of reactive oxygen and nitrogen species with nanomaterials. Nano Res. 2018;11:4955–84.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sheng JL, Chen JH, Kang JH, Yu Y, Yan N, Fu XZ, Solar R, Wong CP. Octahedral [email protected](OH)(2) nanocages with hierarchical flake-like partitions and yolk-shell constructions for enhanced electrocatalytic exercise. ChemCatChem. 2019;11:2520–5.

    Article 
    CAS 

    Google Scholar
     

  • Liu TF, Xiao BW, Xiang F, Tan JL, Chen Z, Zhang XR, Wu CZ, Mao ZW, Luo GX, Chen XY, Deng J. Ultrasmall copper-based nanoparticles for reactive oxygen species scavenging and alleviation of irritation associated illnesses. Nat Commun. 2020;11:2788.

  • Huang CL, Weng WL, Huang YS, Liao CN. Enhanced photolysis stability of Cu2O grown on Cu nanowires with nanoscale twin boundaries. Nanoscale. 2019;11:13709–13.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gawande MB, Goswami A, Felpin FX, Asefa T, Huang XX, Silva R, Zou XX, Zboril R, Varma RS. Cu and Cu-based nanoparticles: synthesis and functions in overview catalysis. Chem Rev. 2016;116:3722–811.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu Z, Xie LN, Qiu KQ, Liao XX, Rees TW, Zhao ZZ, Ji LN, Chao H. An ultrasmall RuO2 nanozyme exhibiting multienzyme-like exercise for the prevention of acute kidney damage. ACS Appl Mater Interfaces. 2020;12:31205–16.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ni DL, Jiang DW, Kutyreff CJ, Lai JH, Yan YJ, Barnhart TE, Yu B, Im HJ, Kang L, Cho SY, et al. Molybdenum-based nanoclusters act as antioxidants and ameliorate acute kidney damage in mice. Nat Commun. 2018;9:5421.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reshi MS, Shrivastava S, Jaswal A, Sinha N, Uthra C, Shukla S. Gold nanoparticles ameliorate acetaminophen induced hepato-renal damage in rats. Exp Toxicol Pathol. 2017;69:231–40.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • El-Sayed SM, El-Naggar ME, Hussein J, Medhat D, El-Banna M. Impact of Ficus carica L. leaves extract loaded gold nanoparticles in opposition to cisplatin-induced acute kidney damage. Colloids Surf B Biointerfaces. 2019;184:110465.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao J, Liu YF, Jiang B, Cao WM, Kan YS, Chen W, Ding M, Zhang GY, Zhang BW, Xi Okay, et al. Phenylenediamine-based carbon nanodots alleviate acute kidney damage through preferential renal accumulation and antioxidant capability. ACS Appl Mater Interfaces. 2020;12:31745–56.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang H, Yu DQ, Fang J, Zhou Y, Li DW, Liu Z, Ren JS, Qu XG. Phenol-like group functionalized graphene quantum dots structurally mimicking pure antioxidants for extremely environment friendly acute kidney damage therapy. Chem Sci. 2020;11:12721–30.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alidori S, Akhavein N, Thorek DLJ, Behling Okay, Romin Y, Queen D, Beattie BJ, Manova-Todorova Okay, Bergkvist M, Scheinberg DA, McDevitt MR. Focused fibrillar nanocarbon RNAi therapy of acute kidney damage. Sci Transl Med. 2016;8:331ra39.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li F, Li TY, Solar CX, Xia JH, Jiao Y, Xu HP. Selenium-doped carbon quantum dots for free-radical scavenging. Angew Chem-Int Ed. 2017;56:9910–4.

    Article 
    CAS 

    Google Scholar
     

  • Zhao SJ, Lan MH, Zhu XY, Xue HT, Ng TW, Meng XM, Lee CS, Wang PF, Zhang WJ. Inexperienced synthesis of bifunctional fluorescent carbon dots from garlic for mobile imaging and free radical scavenging. ACS Appl Mater Interfaces. 2015;7:17054–60.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen HM, Qiu YW, Ding DD, Lin HR, Solar WJ, Wang GD, Huang WC, Zhang WZ, Lee D, Liu G, et al. Gadolinium-encapsulated graphene carbon nanotheranostics for imaging-guided photodynamic remedy. Adv Mater. 2018;30:1802748.

    Article 

    Google Scholar
     

  • Khurana A, Tekula S, Saifi MA, Venkatesh P, Godugu C. Therapeutic functions of selenium nanoparticles. Biomed Pharmacother. 2019;111:802–12.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rosenkrans ZT, Solar TW, Jiang DW, Chen WY, Barnhart TE, Zhang ZY, Ferreira CA, Wang XD, Engle JW, Huang P, Cai WB. Selenium-doped carbon quantum dots act as broad-spectrum antioxidants for acute kidney damage administration. Adv Sci. 2020;7:2000420.

    Article 
    CAS 

    Google Scholar
     

  • Hou DZ, Xie CS, Huang KJ, Zhu CH. The manufacturing and traits of strong lipid nanoparticles (SLNs). Biomaterials. 2003;24:1781–5.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thukral DK, Dumoga S, Mishra AK. Stable lipid nanoparticles: promising therapeutic nanocarriers for drug supply. Curr Drug Deliv. 2014;11:771–91.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Misra S, Chopra Okay, Sinha VR, Medhi B. Galantamine-loaded solid-lipid nanoparticles for enhanced mind supply: preparation, characterization, in vitro and in vivo evaluations. Drug Deliv. 2016;23:1434–43.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pawar H, Surapaneni SK, Tikoo Okay, Singh C, Burman R, Gill MS, Suresh S. Folic acid functionalized long-circulating co-encapsulated docetaxel and curcumin strong lipid nanoparticles: in vitro analysis, pharmacokinetic and biodistribution in rats. Drug Deliv. 2016;23:1453–68.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu B, Han L, Liu J, Han S, Chen Z, Jiang L. Co-delivery of paclitaxel and TOS-cisplatin through TAT-targeted strong lipid nanoparticles with synergistic antitumor exercise in opposition to cervical most cancers. Int J Nanomed. 2017;12:955–68.

    Article 
    CAS 

    Google Scholar
     

  • Hu JB, Music GL, Liu D, Li SJ, Wu JH, Kang XQ, Qi J, Jin FY, Wang XJ, Xu XL, et al. Sialic acid-modified strong lipid nanoparticles as vascular endothelium-targeting carriers for ischemia-reperfusion-induced acute renal damage. Drug Deliv. 2017;24:1856–67.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu H, Zhang H, Yin N, Zhang Y, Gou J, Yin T, He H, Ding H, Zhang Y, Tang X. Sialic acid-modified dexamethasone lipid calcium phosphate gel core nanoparticles for goal therapy of kidney damage. Biomater Sci. 2020;8:3871–84.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hata A, Lieberman J. Dysregulation of microRNA biogenesis and gene silencing in most cancers. Sci Sign. 2015;8:re3.

    Article 
    PubMed 

    Google Scholar
     

  • Zhang S, Solar H, Kong W, Zhang B. Useful position of microRNA-500a-3P-loaded liposomes within the therapy of cisplatin-induced AKI. IET Nanobiotechnol. 2020;14:465–9.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yoshitomi T, Hirayama A, Nagasaki Y. The ROS scavenging and renal protecting results of pH-responsive nitroxide radical-containing nanoparticles. Biomaterials. 2011;32:8021–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu D, Shu GF, Jin FY, Qi J, Xu XL, Du Y, Yu H, Wang J, Solar MC, You YC, et al. ROS-responsive chitosan-SS31 prodrug for AKI remedy through fast distribution within the kidney and long-term retention within the renal tubule. Sci Adv. 2020;6:eabb7422.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang LY, You XR, Dai CL, Fang YF, Wu J. Growth of poly(p-coumaric acid) as a self-anticancer nanocarrier for environment friendly and biosafe most cancers remedy. Biomater Sci. 2022;10:2263–74.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • You XR, Wang LY, Wang L, Wu J. Rebirth of aspirin synthesis by-product: prickly poly(salicylic acid) nanoparticles as self-anticancer drug service. Adv Funct Mater. 2021;31:2100805.

    Article 
    CAS 

    Google Scholar
     

  • Wang YQ, Li CJ, Du L, Liu Y. A reactive oxygen species-responsive dendrimer with low cytotoxicity for environment friendly and focused gene supply. Chin Chem Lett. 2020;31:275–80.

    Article 

    Google Scholar
     

  • Liu D, Jin FY, Shu GF, Xu XL, Qi J, Kang XQ, Yu H, Lu KJ, Jiang SP, Han F, et al. Enhanced effectivity of mitochondria-targeted peptide SS-31 for acute kidney damage by pH-responsive and AKI-kidney focused nanopolyplexes. Biomaterials. 2019;211:57–67.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rampanelli E, Dessing MC, Claessen N, Teske GJD, Joosten SPJ, Friends ST, Leemans JC, Florquin S. CD44-deficiency attenuates the immunologic responses to LPS and delays the onset of endotoxic shock-induced renal irritation and dysfunction. PLoS ONE. 2013;8:e84479.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Herrera MB, Bussolati B, Bruno S, Morando L, Mauriello-Romanazzi G, Sanavio F, Stamenkovic I, Biancone L, Camussi G. Exogenous mesenchymal stem cells localize to the kidney via CD44 following acute tubular damage. Kidney Int. 2007;72:430–41.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lewington AJP, Padanilam BJ, Martin DR, Hammerman MR. Expression of CD44 in kidney after acute ischemic damage in rats. Am J Physiol-Regul Integr Comp Physiol. 2000;278:R247–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu JB, Kang XQ, Liang J, Wang XJ, Xu XL, Yang P, Ying XY, Jiang SP, Du YZ. E-selectin-targeted sialic acid-peg-dexamethasone micelles for enhanced anti-inflammatory efficacy for acute kidney damage. Theranostics. 2017;7:2204–19.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lawrence MG, Altenburg MK, Sanford R, Willett JD, Bleasdale B, Ballou B, Wilder J, Li F, Miner JH, Berg UB, Smithies O. Permeation of macromolecules into the renal glomerular basement membrane and seize by the tubules. Proc Natl Acad Sci USA. 2017;114:2958–63.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu H, Lin TS, Chen W, Cao WM, Zhang CW, Wang TW, Ding M, Zhao S, Wei H, Guo HQ, Zhao XZ. Measurement and temporal-dependent efficacy of oltipraz-loaded PLGA nanoparticles for therapy of acute kidney damage and fibrosis. Biomaterials. 2019;219:119368.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nilsson L, Madsen Okay, Topcu SO, Jensen BL, Frokiaer J, Norregaard R. Disruption of cyclooxygenase-2 prevents downregulation of cortical AQP2 and AQP3 in response to bilateral ureteral obstruction within the mouse. Am J Physiol Renal Physiol. 2012;302:F1430-1439.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Norregaard R, Jensen BL, Topcu SO, Nielsen SS, Walter S, Djurhuus JC, Frokiaer J. Cyclooxygenase kind 2 is elevated in obstructed rat and human ureter and contributes to pelvic stress improve after obstruction. Kidney Int. 2006;70:872–81.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Norregaard R, Jensen BL, Topcu SO, Wang GX, Schweer H, Nielsen S, Frokiaer J. Urinary tract obstruction induces transient accumulation of COX-2-derived prostanoids in kidney tissue. Am J Physiol-Regul Integr Comp Physiol. 2010;298:R1017–25.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miyajima A, Ito Okay, Asano T, Seta Okay, Ueda A, Hayakawa M. Does cyclooxygenase-2 inhibitor forestall renal tissue injury in unilateral ureteral obstruction? J Urol. 2001;166:1124–9.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang CX, Nilsson L, Cheema MU, Wang Y, Frokiaer J, Gao S, Kjems J, Norregaard R. Chitosan/siRNA nanoparticles focusing on cyclooxygenase kind 2 attenuate unilateral ureteral obstruction-induced kidney damage in mice. Theranostics. 2015;5:110–23.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang DY, Liu HK, He T, Younis MR, Tu TH, Yang C, Zhang J, Lin J, Qu JL, Huang P. Biodegradable self-assembled ultrasmall nanodots as reactive oxygen/nitrogen species scavengers for theranostic software in acute kidney damage. Small. 2021;17:119368.


    Google Scholar
     

  • Liu S, Gao X, Wang Y, Wang J, Qi X, Dong Okay, Shi D, Wu X, Guo C. Baicalein-loaded silk fibroin peptide nanofibers shield in opposition to cisplatin-induced acute kidney damage: Fabrication, characterization and mechanism. Int J Pharm. 2022;626:122161.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hou JJ, Wang H, Ge ZL, Zuo TT, Chen Q, Liu XG, Mou S, Fan CH, Xie Y, Wang LH. Treating acute kidney damage with antioxidative black phosphorus nanosheets. Nano Lett. 2020;20:1447–54.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao X, Wang LY, Li JM, Peng LM, Tang CY, Zha XJ, Ke Okay, Yang MB, Su BH, Yang W. Redox-mediated synthetic non-enzymatic antioxidant MXene nanoplatforms for acute kidney damage alleviation. Adv Sci. 2021;8:2101498.

    Article 
    CAS 

    Google Scholar
     

  • Foroutan T, Nafar M, Motamedi E. Intraperitoneal injection of graphene oxide nanoparticle accelerates stem cell remedy results on acute kidney damage. Stem Cells Cloning-Adv Appl. 2020;13:21–32.


    Google Scholar
     

  • Fu J, Chang L. Fabrication of fasudil hydrochloride modified graphene oxide biocomposites and its defensive impact acute renal damage in septicopyemia rats. J Photochem Photobiol B-Biol. 2018;186:125–30.

    Article 
    CAS 

    Google Scholar
     

  • Lieber CM. One-dimensional nanostructures: chemistry, physics and functions. Stable State Commun. 1998;107:607–16.

    Article 
    CAS 

    Google Scholar
     

  • Guo B, Wang SH, Wu ZX, Wang ZX, Wang DH, Huang H, Zhang F, Ge YQ, Zhang H. Sub-200 fs soliton mode-locked fiber laser based mostly on bismuthene saturable absorber. Choose Specific. 2018;26:22750–60.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Music YF, Liang ZM, Jiang XT, Chen YX, Li ZJ, Lu L, Ge YQ, Wang Okay, Zheng JL, Lu SB, et al. Few-layer antimonene embellished microfiber: ultra-short pulse technology and all-optical thresholding with enhanced long run stability. 2D Supplies. 2017;4:045010.

    Article 

    Google Scholar
     

  • Yang J, Su T, Zou H, Yang G, Ding J, Chen X. Spatiotemporally focused polypeptide nanoantidotes enhance chemotherapy tolerance of cisplatin. Angew Chem Int Ed Engl. 2022;e202211136.

  • Al-Jamal KT, Gherardini L, Bardi G, Nunes A, Guo C, Bussy C, Herrero MA, Bianco A, Prato M, Kostarelos Okay, Pizzorusso T. Useful motor restoration from mind ischemic insult by carbon nanotube-mediated siRNA silencing. Proc Natl Acad Sci USA. 2011;108:10952–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bartholomeusz G, Cherukuri P, Kingston J, Cognet L, Lemos R Jr, Leeuw TK, Gumbiner-Russo L, Weisman RB, Powis G. In vivo therapeutic silencing of hypoxia-inducible issue 1 alpha (HIF-1 alpha) utilizing single-walled carbon nanotubes noncovalently coated with siRNA. Nano Res. 2009;2:279–91.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scheinberg DA, Villa CH, Escorcia FE, McDevitt MR. Conscripts of the infinite armada: systemic most cancers remedy utilizing nanomaterials. Nat Rev Clin Oncol. 2010;7:266–76.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mulvey JJ, Villa CH, McDevitt MR, Escorcia FE, Casey E, Scheinberg DA. Self-assembly of carbon nanotubes and antibodies on tumours for focused amplified supply. Nat Nanotechnol. 2013;8:763–71.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ruggiero A, Villa CH, Bander E, Rey DA, Bergkvist M, Batt CA, Manova-Todorova Okay, Deen WM, Scheinberg DA, McDevitt MR. Paradoxical glomerular filtration of carbon nanotubes. Proc Natl Acad Sci USA. 2010;107:12369–74.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McDevitt MR, Chattopadhyay D, Jaggi JS, Finn RD, Zanzonico PB, Villa C, Rey D, Mendenhall J, Batt CA, Njardarson JT, Scheinberg DA. PET imaging of soluble yttrium-86-labeled carbon nanotubes in mice. PLoS ONE. 2007;2:e907.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu JL, Hui D, Lau D. Two-dimensional nanomaterial-based polymer composites: Fundamentals and functions. Nanotechnol Rev. 2022;11:770–92.

    Article 
    CAS 

    Google Scholar
     

  • Wang YM, Feng W, Chen Y. Chemistry of two-dimensional MXene nanosheets in theranostic nanomedicine. Chin Chem Lett. 2020;31:937–46.

    Article 
    CAS 

    Google Scholar
     

  • Hao JL, Wang WJ, Zhao JW, Che HL, Chen L, Sui X. Development and software of bioinspired nanochannels based mostly on two-dimensional supplies. Chin Chem Lett. 2022;33:2291–300.

    Article 
    CAS 

    Google Scholar
     

  • Ding J, Xiao H, Chen X. Superior biosafety supplies for prevention and theranostics of biosafety points. Biosaf Well being. 2022;4:59–60.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li LK, Yu YJ, Ye GJ, Ge QQ, Ou XD, Wu H, Feng DL, Chen XH, Zhang YB. Black phosphorus field-effect transistors. Nat Nanotechnol. 2014;9:372–7.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shao JD, Xie HH, Huang H, Li ZB, Solar ZB, Xu YH, Xiao QL, Yu XF, Zhao YT, Zhang H, et al. Biodegradable black phosphorus-based nanospheres for in vivo photothermal most cancers remedy. Nat Commun. 2016;7:3923.

    Article 

    Google Scholar
     

  • Zhou QH, Chen Q, Tong YL, Wang JL. Mild-induced ambient degradation of few-layer black phosphorus: mechanism and safety. Angew Chem-Int Ed. 2016;55:11437–41.

    Article 
    CAS 

    Google Scholar
     

  • Huang Okay, Li ZJ, Lin J, Han G, Huang P. Two-dimensional transition steel carbides and nitrides (MXenes) for biomedical functions. Chem Soc Rev. 2018;47:5109–24.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Soleymaniha M, Shahbazi MA, Rafieerad AR, Maleki A, Amiri A. Selling position of MXene nanosheets in biomedical sciences: therapeutic and biosensing improvements. Adv Healthc Mater. 2019;8:1801137.

    Article 

    Google Scholar
     

  • Lin H, Chen Y, Shi JL. Insights into 2D MXenes for versatile biomedical functions: present advances and challenges forward. Adv Sci. 2018;5:1800518.

    Article 

    Google Scholar
     

  • Zhang CFJ, Pinilla S, McEyoy N, Cullen CP, Anasori B, Lengthy E, Park SH, Seral-Ascaso A, Shmeliov A, Krishnan D, et al. Oxidation stability of colloidal two-dimensional titanium carbides (MXenes). Chem Mater. 2017;29:4848–56.

    Article 
    CAS 

    Google Scholar
     

  • Jastrzebska AM, Szuplewska A, Wojciechowski T, Chudy M, Ziemkowska W, Chlubny L, Rozmyslowska A, Olszyna A. In vitro research on cytotoxicity of delaminated Ti3C2 MXene. J Hazard Mater. 2017;339:1–8.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Martindale JL, Holbrook NJ. Mobile response to oxidative stress: signaling for suicide and survival. J Cell Physiol. 2002;192:1–15.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim J, Choi KS, Kim Y, Lim KT, Seonwoo H, Park Y, Kim DH, Choung PH, Cho CS, Kim SY, et al. Bioactive results of graphene oxide cell tradition substratum on construction and performance of human adipose-derived stem cells. J Biomed Mater Res Half A. 2013;101:3520–30.

    Article 

    Google Scholar
     

  • Bai H, Li C, Wang XL, Shi GQ. A pH-sensitive graphene oxide composite hydrogel. Chem Commun. 2010;46:2376–8.

    Article 
    CAS 

    Google Scholar
     

  • Leave a Reply