How We Diminished DynamoDB Prices by Utilizing DynamoDB Streams and Scans Extra Effectively

A lot of our customers implement operational reporting and analytics on DynamoDB utilizing Rockset as a SQL intelligence layer to serve reside dashboards and purposes. As an engineering workforce, we’re continuously trying to find alternatives to enhance their SQL-on-DynamoDB expertise.


For the previous few weeks, we’ve been exhausting at work tuning the efficiency of our DynamoDB ingestion course of. Step one on this course of was diving into DynamoDB’s documentation and performing some experimentation to make sure that we have been utilizing DynamoDB’s learn APIs in a approach that maximizes each the steadiness and efficiency of our system.

Background on DynamoDB APIs

AWS gives a Scan API and a Streams API for studying information from DynamoDB. The Scan API permits us to linearly scan a whole DynamoDB desk. That is costly, however typically unavoidable. We use the Scan API the primary time we load information from a DynamoDB desk to a Rockset assortment, as we’ve no technique of gathering all the info apart from scanning via it. After this preliminary load, we solely want to watch for updates, so utilizing the Scan API can be fairly wasteful. As an alternative, we use the Streams API which provides us a time-ordered queue of updates utilized to the DynamoDB desk. We learn these updates and apply them into Rockset, giving customers realtime entry to their DynamoDB information in Rockset!

Dynamo Ingester Architecture

The problem we’ve been endeavor is to make ingesting information from DynamoDB into Rockset as seamless and cost-efficient as attainable given the constraints introduced by information sources, like DynamoDB. Following, I’ll talk about just a few of points we bumped into in tuning and stabilizing each phases of our DynamoDB ingestion course of whereas retaining prices low for our customers.


How we measure scan efficiency

Through the scanning section, we purpose to persistently maximize our learn throughput from DynamoDB with out consuming greater than a user-specified variety of RCUs per desk. We wish ingesting information into Rockset to be environment friendly with out interfering with present workloads working on customers’ reside DynamoDB tables.

Understanding the way to set scan parameters

From very preliminary testing, we seen that our scanning section took fairly a very long time to finish so we did some digging to determine why. We ingested a DynamoDB desk into Rockset and noticed what occurred throughout the scanning section. We anticipated to persistently devour all the provisioned throughput.

Initially, our RCU consumption seemed like the next:

Scan Initial RCU

We noticed an inexplicable degree of fluctuation within the RCU consumption over time, significantly within the first half of the scan. These fluctuations are dangerous as a result of every time there’s a serious drop within the throughput, we find yourself lengthening the ingestion course of and rising our customers DynamoDB prices.

The issue was clear however the underlying trigger was not apparent. On the time, there have been just a few variables that we have been controlling fairly naively. DynamoDB exposes two necessary variables: web page dimension and phase depend, each of which we had set to mounted values. We additionally had our personal fee limiter which throttled the variety of DynamoDB Scan API calls we made. We had additionally set the restrict this fee limiter was imposing to a hard and fast worth. We suspected that certainly one of these variables being sub-optimally configured was the doubtless explanation for the huge fluctuations we have been observing.

Some investigation revealed that the reason for the fluctuation was primarily the speed limiter. It turned out the mounted restrict we had set on our fee limiter was too low, so we have been getting throttled too aggressively by our personal fee limiter. We determined to repair this downside by configuring our limiter based mostly on the quantity of RCU allotted to the desk. We are able to simply (and do plan to) transition to utilizing a user-specified variety of RCU for every desk, which can enable us to restrict Rockset’s RCU consumption even when customers have RCU autoscaling enabled.

public int getScanRateLimit(AmazonDynamoDB consumer, String tableName,
                            int numSegments) {
    TableDescription tableDesc = consumer.describeTable(tableName).getTable();
    // Observe: this may return 0 if the desk has RCU autoscaling enabled
    remaining lengthy tableRcu = tableDesc.getProvisionedThroughput().getReadCapacityUnits();
    remaining int numSegments = config.getNumSegments();
    return desiredRcuUsage / numSegments;

For every phase, we carry out a scan, consuming capability on our fee limiter as we devour DynamoDB RCU’s.

public void doScan(AmazonDynamoDb consumer, String tableName, int numSegments) {
    RateLimiter rateLimiter = RateLimiter.create(getScanRateLimit(consumer, 
                                                 tableName, numSegments))
    whereas (!executed) {
        ScanResult consequence = consumer.scan(/* feed scan request in */);
        // do processing ...

The results of our new Scan configuration was the next:

Dynamo After RCU

We have been pleased to see that, with our new configuration, we have been capable of reliably management the quantity of throughput we consumed. The issue we found with our fee limiter dropped at mild our underlying want for extra dynamic DynamoDB Scan configurations. We’re persevering with to run experiments to find out the way to dynamically set the web page dimension and phase depend based mostly on table-specific information, however we additionally moved onto coping with among the challenges we have been going through with DynamoDB Streams.


How we measure streaming efficiency

Our purpose throughout the streaming section of ingestion is to reduce the period of time it takes for an replace to enter Rockset after it’s utilized in DynamoDB whereas retaining the associated fee utilizing Rockset as little as attainable for our customers. The first value issue for DynamoDB Streams is the variety of API calls we make. DynamoDB’s pricing permits customers 2.5 million free API calls and prices $0.02 per 100,000 requests past that. We wish to attempt to keep as near the free tier as attainable.

Beforehand we have been querying DynamoDB at a fee of ~300 requests/second as a result of we encountered loads of empty shards within the streams we have been studying. We believed that we’d must iterate via all of those empty shards whatever the fee we have been querying at. To mitigate the load we placed on customers’ Dynamo tables (and in flip their wallets), we set a timer on these reads after which stopped studying for five minutes if we didn’t discover any new information. On condition that this mechanism ended up charging customers who didn’t even have a lot information in DynamoDB and nonetheless had a worst case latency of 5 minutes, we began investigating how we might do higher.

Decreasing the frequency of streaming calls

We ran a number of experiments to make clear our understanding of the DynamoDB Streams API and decide whether or not we might cut back the frequency of the DynamoDB Streams API calls our customers have been being charged for. For every experiment, we assorted the period of time we waited between API calls and measured the typical period of time it took for an replace to a DynamoDB desk to be mirrored in Rockset.

Inserting information into the DynamoDB desk at a continuing fee of two information/second, the outcomes have been as follows:

Dynamo Table 1

Inserting information into the DynamoDB desk in a bursty sample, the outcomes have been as follows:

Dynamo Table 2

The outcomes above confirmed that making 1 API name each second is lots to make sure that we keep sub-second latencies. Our preliminary assumptions have been flawed, however these outcomes illuminated a transparent path ahead. We promptly modified our ingestion course of to question DynamoDB Streams for brand new information solely as soon as per second so as give us the efficiency we’re on the lookout for at a a lot lowered value to our customers.

Calculating our value discount

Since with DynamoDB Streams we’re instantly chargeable for our customers prices, we determined that we would have liked to exactly calculate the associated fee our customers incur as a result of approach we use DynamoDB Streams. There are two components which wholly decide the quantity that customers will likely be charged for DynamoDB Streams: the variety of Streams API calls made and the quantity of information transferred. The quantity of information transferred is basically past our management. Every API name response unavoidably transfers a small quantity (768 bytes) of information. The remaining is all person information, which is barely learn into Rockset as soon as. We targeted on controlling the variety of DynamoDB Streams API calls we make to customers’ tables as this was beforehand the motive force of our customers’ DynamoDB prices.

Following is a breakdown of the associated fee we estimate with our newly reworked ingestion course of:

Dynamo Table 3

We have been pleased to see that, with our optimizations, our customers ought to incur just about no extra value on their DynamoDB tables resulting from Rockset!


We’re actually excited that the work we’ve been doing has efficiently pushed DynamoDB prices down for our customers whereas permitting them to work together with their DynamoDB information in Rockset in realtime!

It is a simply sneak peek into among the challenges and tradeoffs we’ve confronted whereas working to make ingesting information from DynamoDB into Rockset as seamless as attainable. Should you’re curious about studying extra about the way to operationalize your DynamoDB information utilizing Rockset take a look at a few of our latest materials and keep tuned for updates as we proceed to construct Rockset out!

If you would like to see Rockset and DynamoDB in motion, you need to take a look at our temporary product tour.

Different DynamoDB assets:

Leave a Reply